
 [Ngonidzashe, 2(4): April, 2013

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

IJESRT
INTERNATIONAL JOURNA

 Consistent Query Answering in Inconsistent Databases

Department of Computer

These days it is more common to build integrated or federated databases that draw data from multiple, autonomous
and distributed sources. The problem of data integration is nevertheless
consistent query answering, which is a specific issue arising in data integration. Consistent query answering is an
approach to retrieving consistent answers over databases that might be inconsistent with respect t
integrity constraints. The approach is based on concepts of repair and query rewriting. This paper surveys several
recent researches on obtaining consistent information from inconsistent databases, such as the underlying query
rewriting model and a number of approaches to computing consistent query answers.

Introduction

This paper focuses on query answering in
inconsistent databases. Arenas, Bertossi, and
Chomicki (1999) define an inconsistent database as
one that violates a given set of integrity constraints.
So the major thrust of this paper is to explore how
consistent information can be obtained from
inconsistent databases in response to user queries.
Arenas, Bertossi, and Chomicki (1999) establish that
the traditional practice with regards to inconsistent
databases is to back out transactions that violate
integrity constraints. However this paper does not go
by traditional practice. Instead, the paper presents
ways of querying inconsistent databases such as
repairs, query rewriting, consistent answers,
ConQuer, logic programs and so on.

Bertossi and Chomicki (2003)
consistent query answer is, intuitively, true regardless
of the way the database is fixed to remove integrity
constraint violations. Thus answer consistency serves
as an indication of its reliability. On the other hand,
Arenas et al (1999) note that an answer to a query is
consistent if it is obtained as an answer every time
the query is posed to a minimally repaired version of
the original database. Intuitively, an answer to a
query posed to a database that violates the integrity
constraints will be consistent in a precise sense: It
should be the same as the answer obtained from any
minimally repaired version of the original database.
Bertossi, and Chomicki (2003) further
database repair is another database that is
and minimally differs from the original database. In
this paper, only consistent query answers for first
order and scalar aggregation queries will be
considered.

2013] ISSN: 2277

International Journal of Engineering Sciences & Research Technology

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Consistent Query Answering in Inconsistent Databases
Zanamwe Ngonidzashe

Department of Computer Science, University of Zimbabwe, Zimbabwe
nbzanamwe@gmail.com

Abstract
These days it is more common to build integrated or federated databases that draw data from multiple, autonomous
and distributed sources. The problem of data integration is nevertheless very complex. This paper concentrates on
consistent query answering, which is a specific issue arising in data integration. Consistent query answering is an
approach to retrieving consistent answers over databases that might be inconsistent with respect t
integrity constraints. The approach is based on concepts of repair and query rewriting. This paper surveys several
recent researches on obtaining consistent information from inconsistent databases, such as the underlying query

and a number of approaches to computing consistent query answers.

This paper focuses on query answering in
inconsistent databases. Arenas, Bertossi, and

define an inconsistent database as
one that violates a given set of integrity constraints.
So the major thrust of this paper is to explore how

information can be obtained from
databases in response to user queries.

(1999) establish that
the traditional practice with regards to inconsistent
databases is to back out transactions that violate
integrity constraints. However this paper does not go
by traditional practice. Instead, the paper presents

querying inconsistent databases such as
repairs, query rewriting, consistent answers,

(2003) indicate that a
is, intuitively, true regardless

to remove integrity
constraint violations. Thus answer consistency serves
as an indication of its reliability. On the other hand,
Arenas et al (1999) note that an answer to a query is
consistent if it is obtained as an answer every time

to a minimally repaired version of
the original database. Intuitively, an answer to a
query posed to a database that violates the integrity
constraints will be consistent in a precise sense: It
should be the same as the answer obtained from any

repaired version of the original database.
(2003) further assert that a

database repair is another database that is consistent
differs from the original database. In

this paper, only consistent query answers for first-
order and scalar aggregation queries will be

Rahm and Do (2000) aver that, although

there exist a wide variety of tools for automatic
elimination of duplicates, extraction and
standardization of information, there are practically
no tools that automatically resolve integrity
constraint violations. Further, they affirm that, the
user is responsible for providing a procedure that
decides how the conflicts should be resolved.
Vassiliadis, Vagena, Skiadopoulos, and Karayannidis
(2000) establish that the standard repertoire of actions
that can be performed on a conflicting tuple is:
removing the tuple, leaving the tuple, or reporting the
tuple to an auxiliary table.
1.1 Inconsistent data scenarios
This section covers practical scenarios where data is
inconsistent with integrity constraints.
Chomicki (2003) present the following
1.1.1 Integration of autonomous data sources.

Integration of independent data sources is
one of the causes of inconsistency in databases. It is
possible and common that independent data sources
may separately satisfy given integrity constraints, but
when they are integrated together the constraints may
be violated. For instance, consider different,
conflicting salary for the same employee in an
employee database and a taxpayer database. Each of
those databases separately satisfies the functional
dependency that associates a single salary with each
employee, and yet together they violate this
dependency. Additionally, since the sources are
autonomous, the violations cannot be simply fixed by
removing one of the conflicting tuples.

ISSN: 2277-9655

International Journal of Engineering Sciences & Research Technology[905-914]

ENCES & RESEARCH

Consistent Query Answering in Inconsistent Databases

Science, University of Zimbabwe, Zimbabwe

These days it is more common to build integrated or federated databases that draw data from multiple, autonomous
very complex. This paper concentrates on

consistent query answering, which is a specific issue arising in data integration. Consistent query answering is an
approach to retrieving consistent answers over databases that might be inconsistent with respect to some given
integrity constraints. The approach is based on concepts of repair and query rewriting. This paper surveys several
recent researches on obtaining consistent information from inconsistent databases, such as the underlying query

Rahm and Do (2000) aver that, although
there exist a wide variety of tools for automatic
elimination of duplicates, extraction and
standardization of information, there are practically

at automatically resolve integrity
constraint violations. Further, they affirm that, the
user is responsible for providing a procedure that
decides how the conflicts should be resolved.
Vassiliadis, Vagena, Skiadopoulos, and Karayannidis

that the standard repertoire of actions
that can be performed on a conflicting tuple is:
removing the tuple, leaving the tuple, or reporting the

This section covers practical scenarios where data is
inconsistent with integrity constraints. Bertossi, and

present the following scenarios:
Integration of autonomous data sources.
Integration of independent data sources is

ses of inconsistency in databases. It is
possible and common that independent data sources
may separately satisfy given integrity constraints, but
when they are integrated together the constraints may
be violated. For instance, consider different,

ing salary for the same employee in an
employee database and a taxpayer database. Each of
those databases separately satisfies the functional
dependency that associates a single salary with each
employee, and yet together they violate this

tionally, since the sources are
autonomous, the violations cannot be simply fixed by
removing one of the conflicting tuples.

 [Ngonidzashe, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[905-914]

1.1.2 Unenforced integrity constraints.
Even though integrity constraints capture an

important part of the semantics of a given
application, they may still fail to be enforced for a
variety of reasons. A data source may be a legacy
system that does not support the notion of integrity
checking altogether. Or, integrity checking may be
too costly (this is often the reason for dropping some
integrity constraints from a database schema).
Finally, the database management system (DBMS)
itself may support only a limited class of constraints.
1.1.3 Temporary inconsistencies.

It may often be the case that the consistency
of a database is only temporarily violated, and further
updates or transactions are expected to restore it. This
phenomenon is becoming more and more common,
as the databases are increasingly involved in a variety
of long-running activities or workflows.
1.1.4 Conflict resolution.

Removing tuples from a database to restore
consistency leads to information loss, which may be
undesirable. For example, one may want to keep
multiple phone numbers for an employee if it is not
clear which is the correct one. In general, the process
of conflict resolution may be complex, costly, and
non-deterministic. In real-time decision-making
applications, there may not be enough time to resolve
all conflicts relevant to a query.

In line with the above, Arenas, Bertossi, and
Chomicki (1999) assert that databases may become
inconsistent with respect to a given set of integrity
constraints because of the following factors:

1. Certain integrity constraints cannot be
expressed or maintained by existing
database management systems.

2. Transient inconsistencies caused by the
inherent non-atomicity of database
transactions.

3. Delayed updates of data warehouses.
4. Integration of heterogeneous databases

particularly with duplicated information.
5. Inconsistency with respect to soft integrity

constraints where transactions in violation of
their conditions are not prevented from
executing.

6. Legacy data on which one wants to impose
constraints. The consistency of the database
will be restored by executing further
transactions.

7. User constraints that cannot be checked or
maintained

1.2 Applications of consistent query answering
techniques

This section looks at types of databases where
data inconsistencies are common and also where
solutions to querying inconsistent databases can be
applied.

1.2.1 Data warehousing.
Data contained in a data warehouse comes

from various sources and as such, some of it typically
may not satisfy the given integrity constraints. The
normal approach is to clean the data by removing
inconsistencies before the data is stored in the
warehouse. However, a different scenario becomes
possible wherein the inconsistencies are not removed
but rather query answers are marked as “consistent”
or “inconsistent”. In this way, information loss due to
data cleaning may be prevented.

1.2.2 Database integration.
Often, many different databases are integrated
together to provide a single unified view for the
users. Database integration is difficult since it
requires the resolution of many different kinds of
discrepancies of the integrated databases. One
possible discrepancy is due to different sets of
integrity constraints. Moreover, even if every
integrated database locally satisfies the same integrity
constraint, the constraint may be globally violated.
For example, different databases may assign different
addresses to the same student. Such conflicts may fail
to be resolved at all and inconsistent data cannot be
“cleaned” because of the autonomy of different
databases. Therefore, it is important to be able to find
out, given a set of local integrity constraints, which
query answers returned from the integrated database
are consistent with the constraints and which are not.

1.1.3 Active and reactive databases.
A violation of integrity constraints may be acceptable
under the provision that it will be repaired in the near
future. For example, the stock level in a warehouse
may be allowed to fall below the required minimum
if the necessary replenishments have been ordered.
During this temporary inconsistency, however, query
answers should give an indication whether they are
consistent with the constraints or not. This problem is
particularly acute in active databases that allow such
consistency lapses. The result of evaluating a trigger
condition that is consistent with the integrity
constraints should be treated differently from the one
that isn’t.
1.3 Classes of Integrity constraints

Integrity constraints are defined as typed,
closed first-order language formulas. Xie and Yang
(2007) note that, integrity constraints (ICs) maintain
the consistency and validity of data and enable them
to conform to the rules of entities in the real world
effectively. Chomicki, Marcinkowski and Staworko

 [Ngonidzashe, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[905-914]

(2004), note that the main role of integrity constraints
in databases is to enforce consistency. The
occurrence of integrity violations is prevented by
DBMS software. The following are the classes of
integrity constraints:
1. Universal integrity constraints: are constraints

that apply to an entire database schema
2. Denial constraints: They are a special case of

universal constraints. Jan Chomicki and Jerzy
Marcinkowski (2000) establish that denial
constraints allow an arbitrary number of literals
per constraint and arbitrary built-in predicates.
Further, they comment that denial constraints
also relax the typedness restriction of functional
dependencies and are particularly useful for
databases with interpreted data, e.g., numbers.

3. Binary constraints: universal constraints with at
most two occurrences of database relations.

4. Functional dependencies (FDs): They are a
special case of binary denial constraints. A more
familiar formulation of a FD is X � Y where X
is the set of attributes of P corresponding to x1
and Y the set of attributes of P corresponding to
x2.

5. Referential integrity constraints, also known as
inclusion dependencies: these are constraints that
stipulate that values of all foreign keys must be
consistent with values of referencing relations.

Solutions for Inconsistency Handling

2.1 Paraconsistent logics (Hunter, 1998 and
Grant and Subrahmanian, 2000)

2.2 Non-repairing and merging-oriented
techniques:

a. Pre-orders on information sets
(Cantwell, 1998 or Marquis and
Porquet, 2003 in the
paraconsistent framework).

b. Argumentative hierarchy (Elvang-
Goransson and Hunter, 1995),
argumentative frameworks (Dung,
1995) and databases (Pradhan,
2003).

c. Fusion rules (Appriou et al., 2001).
d. Merging databases (Cholvy and

Moral, 2001).
e. Contextualizing ontologies

(Bouquet, Giunchiglia, van
Harmelen, Serafini and
Stuckenschmidt, 2003) and data

(MacGregor and Ko, 2003).
 2.3 Measuring the anomalies:

a. Evaluating by means of
paraconsistent logic (Hunter,
2003).

b. Measuring inconsistent information
(Knight, 2003).

c. Consistent interpretation of Skolem
noise (Alonso et al., 2003).

 2.4 Repairing techniques:
a. To apply knowledge reductions in

inconsistent systems
(Kryszkiewiccz, 2001).

b. Fellegi-Holt method (Boskovitz,
Goré and Hegland, 2003).

c. Database repairs by tableaux
method (Bertossi and Schwind,
2004).

d. Consistent querying to repair
databases (Greco and Zumpano,
2000).

e. Consistent enforcement of the
database by means of greatest
consistent specializations (Link,
2003).

 2.5 Consistent answering techniques without
reparation:

a. Transformation of the query to
obtain consistent answers (Celle
and Bertossi, 1994).

b. Consistent query answer in the
presence of inconsistent databases
(Greco and Zumpano, 2000)

c. To use bounded paraconsistent
inference (see e.g. Marquis and
Porquet, 2003).

d. Detecting the cause of the
inconsistency and retrieving a
subset of the original knowledge
database (Arieli and Avron, 1999).

 2.6 Consistency preserving methods:
a. Consistency preserving updates in

deductive databases (Mayol and
Teniente, 2003).

The above six methods and their respective
categories can be applied when querying inconsistent
databases. Due to time and other constraints it is
impractical to explore all the methods in this paper
hence attention will be focused on method 4 and 5.
The reason is that, they are much more found in
practice than other methods. The next sections are
devoted to detailed discussions of the two approaches
namely repairing databases and consistent answering
techniques without reparation.

Database Repairs

Arenas, Bertossi and Chomicki (1999)
define a database repair (hereinafter referred to as a
repair) as an instance of the same database schema
that does satisfy the integrity constraints and differs
from the original instance by a minimal set of

 [Ngonidzashe, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[905-914]

changes. Depending on what is meant by minimal set
of changes, different repair semantics can be
obtained. In line with the above, Caniup´an and
Bertossi (2007) indicate that a repair is a database
instance obtained from database D by deleting or
inserting whole tuples and that repair satisfies the ICs
and minimally differs from D (under set inclusion).
Further, Bertossi (2006) establishes that a tuple t is a
consistent answer to query Q in a database instance r
with respect to integrity constraints IC whenever t is
an answer to Q in every repair of r. Also, Bertossi
(2006) asserts that a repair must meet the following
conditions, a repair of a database instance r is a
database instance r0 over the same schema and
domain, satisfies IC and differs from r by a minimal
set of changes (insertions/deletions of whole tuples).
For example, consider the following relational
database instance Student:

Here the query: Select * from Student has two
consistent answers: Madzima, 76 and Masara, 67

The instance Student violates the functional
dependency F1: Name � Mark through the first two
tuples. This is an inconsistent database. Nevertheless,
there is still some consistent information in it. For
example, only the first two tuples participate in the
integrity violation. In order to characterize the
consistent information, we notice that there are two
possible ways to repair the database in a minimal way
if only deletions and insertions of whole tuples are
allowed. They give rise to two different repairs:

It is clear that that certain information (for
example, Madzima: 76) persists in both repairs, since
it does not participate in the violation of the
functional dependency F1. On the other hand, some
information (for example, Zanamwe: 50) does not
persist in all repairs, because it participates in the
violation of F1. There are other pieces of information

that can be found in both repairs, for we know that
there is a student with the name Zanamwe. Such
information cannot be obtained if we simply discard
the tuples participating in the violation.

In addition to the foregoing repairs, Libkin (n.d.)
claims that database repairs depend on types of
integrity constraints imposed on the database. For
instance in the above example if constraints are
functional dependences: say Name→ Mark, one of
the tuples that violate the functional dependency must
be deleted such that the repair will either be

But not
both as is
in the first
case

OR

On the other hand, if constraints are referential
integrity constraints, and you are given the referential
integrity constraint, R[X] ⊆ S[Y] and the following
relations:

To repair the above database which violates
referential integrity constraints a tuple must be added
to relation S such that it becomes:

Another example to show how database
repairs are done is as follows: let database instance D
= {S (a), S (b), and Q (b)}. D is inconsistent with
respect with IC: x (S(x) ⊆ Q(x)). Consistency can

be minimally restored by: Inserting Q(a): D1 =
{S(a),Q(a), S(b),Q(b)} or by eliminating S(a): D2 =
{S(b),Q(b)}. If we query S(x), the only consistent
answer is tuple b

In addition to above assertions (by Libkin),
Xie and Yang (2007) note that, if a database is
inconsistent with respect to the key constraint two
repairs are possible. For example, it is assumed that a

STUDENT Name Mark
Zanamwe 50
Zanamwe 75
Madzima 76
Musara 67

S Y Q
x1 q1
x3 q2

R X R
x1 r1
x2 r2

STUDENT1 Name Mark
Zanamwe 50
Madzima 76
Musara 67

STUDENT2 Name Mark
Zanamwe 75
Madzima 76
Musara 67

STUDENT1 Name Mark
Zanamwe 50
Madzima 76
Musara 67

 STUDENT2 Name Mark
Zanamwe 75
Madzima 76
Musara 67

S X Q
x1 q1
x3 q2

 x2 q3

 [Ngonidzashe, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[905-914]

relational schema R (reg#, sex), and database instance
I = {(r0020219, male), (r0020219, female),
(r0020345, female)}. I is inconsistent with respect to
the key constrain. The two repairs are: I1 =
{(r0020219, male), (r0020345, female)} and I2 =
{(r0020219, female), (r0020345, female)}. It is clear
that all the repairs have a minimal distance to the
inconsistent database, but {(r0020219, female)} and
{(r0020345, female)} are not repairs because their
distances with respect to I are not minimal under set
inclusion.

The minimality condition for the repairs is
crucial in the definition. Otherwise, the empty set
would trivially be a repair of every instance. For
example, let q1 (reg#) = ∃ sex:R(reg#, sex). The
consistent answers for q1 on I are (r0020219) and
(r0020345). Let q2 (reg#, sex) = R (reg#, sex). The
only consistent answer for q2 on I is (r0020345,
female). Notice that the tuples (r0020219, male) and
(r0020219, female) are not consistent answers. The
reason is that neither of them is present in both
repairs, which reflects the fact that r0020219’s sexes
are inconsistent.

It is evident from the above that, to repair a
database that violates integrity constraints, either
tuples have to be deleted or inserted. In the most
cases, it could be difficult or undesirable to repair the
database in order to restore consistency. This might
be because, the process may be too expensive, useful
data may be lost, one might not have permission to
repair a database and restoring consistency can be a
complex process. One strategy for managing
inconsistent databases is to obtain consistent data
without repairing the inconsistent database first. This
technique is discussed below.

Consistent Answering Techniques Without
Reparation

The approach is also known as, consistent
query answering (CQA). This approach seeks to
resolve inconsistencies at query time over
inconsistent databases. Consistent query answering is
the problem of retrieving “consistent” answers over
inconsistent databases with respect to a set of
integrity constraints (Xie and Yang, 2007). The
approach involves a number sub-approaches namely,
transformation of the query to obtain consistent
answers, consistent query answer in the presence of
inconsistent databases, to use bounded paraconsistent
inference, detecting the cause of the inconsistency
and retrieving a subset of the original database. The
next section looks at some of the computational
techniques for CQA
4.1 Consistent Query Answer in the presence
of inconsistent databases

This technique is based on the postulation
that an inconsistent database is not necessarily going
to be repaired in a way that fully restores its
consistency. This implies that, if such a database is to
be queried, a distinction has to be made between the
information in the database that violates integrity
constraints, and one that does not. Typically, only a
small part of a database will be inconsistent. It is
therefore imperative to make precise the notion of
“consistent" or “correct" information in an
inconsistent database.

The following example presents the basic
intuitions behind the notion of consistent query
answer:
Consider a database subject to the following Integrity
Constraints:

x(R(x) S(x)):

The instance {R (a), R (b), S (a), S(c)}
violates this integrity constraint. Now if the query
asks for all x such that S(x), only a is returned as an
answer consistent with the integrity constraint. So
this approach will only give answers that satisfy
integrity constraints and ignore inconsistent
information.
4.2 Transformation of queries to obtain
consistent answers (Query rewriting)

This is a computational mechanism for
retrieving consistent answers from databases that
violate integrity constraints. Arenas et al (1999) note
that, given a first-order query Q and an inconsistent
database instance r, instead of explicitly computing
all the repairs of r and querying all of them, a new
query T(Q) is computed and posed to r the only
available database. The answers to the new query are
expected to be the consistent answers to Q. Xie and
Yang (2007) assert that, the goal of query rewriting is
to identify the subclasses of consistent queries to
obtain consistent answers by rewriting the query into
a new first-order query. The approach has two
advantages namely: (a) allowing for consistent query
answer in PTIME in data complexity; (b) the original
query is rewritten into a new first-order query, which
could be expressed in SQL. In such a case, consistent
query answer can be done using the same query
engine. On the other hand, this approach is only
limited to the polynomial subclasses of the problem.

Arenas et al. (1999) first propose a method
to compute consistent query answers based on query
rewriting. The rewriting applies to and produces first-
order queries, which draws on semantic query
optimization techniques. A literal in the query can be
resolved with an integrity constraint to form a
residue. The method is an iterative operator that
computes a sequence of queries. At each step of the
iteration, each of the literals in the query gets its

 [Ngonidzashe, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[905-914]

residues appended to it by means of a conjunction.
Residues are associated with single literals P(x) or ¬
P(x) (only one of each for every database relation p).
Then all such residues are conjoined with the literal
to form their expanded versions. If a literal that has
been expanded appears in a residue, the residue has
to be further expanded until no more changes occur.
For each literal P(x) (resp. ¬ P(x)) and each
constraint containing ¬ P(x) (resp. P(x)) in its clausal
form (possibly after variable renaming), a local
residue is obtained by removing ¬ P(x) (resp. P(x))
and the quantifiers for x from the (renamed)
constraint.

Bertossi (2006) indicate that, query
rewriting involves taking the original query Q that
expects consistent answers, and syntactically
transform it into a new query Q0, such that the
rewritten query Q0, when posed to the original
database, obtains as usual answers, the consistent
answers to query Q. The essential question is,
depending on the language in which Q is expressed,
what kind of language is necessary for expressing the
rewriting Q0. The answer to this question should also
depend on the kind of ICs being considered. It has to
be noted that the new query collects as normal
answers those tuples where the value of the first
attribute is not associated to two different values of
the second attribute in the relation. The diagram
below clearly shows how query rewriting works in
practice.
Using the above example, a query to select all
students from the relation student such as

SELECT Name, Mark
FROM Student;

Will give an inconsistent answer, so the query can be
rewritten as

SELECT Name, Mark
FROM Student
CONSISTENT WITH
FD (Name;Mark);

Bertossi (2006) claims that query rewriting has the
following drawbacks:
1. It can only be applied to certain SQL queries,

essentially conjunctions of database tables.
2. Only applicable to certain integrity constraints,

essentially universal integrity constraints. This
covers most integrity constraints found in
database praxis, exclusive of referential integrity
constraints.

3. It only works with more expressive queries
associated with referential integrity constraints

Similarly, Arenas et al (1999) comment that the
query rewriting approach has some limitations,
notably, the iterative operator associated with the
approach only works for queries that are conjunctions

of literals and universal integrity constraints but when
applied to disjunctive or existential queries,
completeness is lost

The diagram below shows how the query
rewriting technique works.

Source: adapted from Bertossi (2006)

4.3. ConQuer (Consistent Querying)

Fuxman, Fuxman and Miller (2005) present
a version of query rewriting known as ConQuer.
They note that ConQuer is a system for efficient and
scalable answering of Structured Query Language
(SQL) queries on databases that may violate a set of
integrity constraints. Further they assert that,
ConQuer permits users to postulate a set of key
constraints together with their queries. The system
rewrites the queries to retrieve all (and only) data that
is consistent with respect to the constraints. The
rewriting is into SQL, so the rewritten queries can be
efficiently optimized and executed by commercial
database systems.

Fuxman, Fuxman and Miller (2005) indicate
that one of the practical applications of ConQuer is in
Customer Relationship Management (CRM) where
an integrated customer database is designed by
drawing information from various autonomous
sources such as sales, shipping, customer support,
web forms and demographic data. Fuxman, Fuxman
and Miller (2005) further postulate that, if data
sources contain inconsistent data just transfer all the
data to the integrated database and then rewrite your
queries such that only consistent answers are
obtained. The diagram below is a pictorial
representation of how query answering in ConQuer
operates.

 [Ngonidzashe, 2(4): April, 2013

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

Source: Adapted from Fuxman, Fuxman and Miller
(2005)

4.4. Conflict graphs

This approach bases a query answering
process on the notion of conflict graph. The conflict
graph constitutes a compact, space
representation of all the repairs of a given database
instance with respect to a set of integrity constraints.
The repairs correspond to maximal independent sets
of the graph. Chomicki, Marcinkowski and Staworko
(2004) establish that this representation is specifically
geared toward denial constraints. Chomicki et al.
(2003) consider projection-free relational algebra
queries with union and set difference, and extends the
tractability of Consistent Query Answer (CQA) with
respect to a set of denial constraints. With conflict
graphs, the vertices of the graph are the tuples in the
database; an edge connects two vertices if they
violate together an integrity constraint. Given a
relation student as shown below:

Two conflict tuples {(Zanamwe, 60), (Zanamwe
are the vertices of the conflict graph, and an edge
connects the two vertices. Here follows
graph.

The conflict graph can be used to compute

consistent answers to queries. Chomicki et al. (1999)
describe a PTIME algorithm for CQA that is

STUDENT Name Mark
Zanamwe 60
Zanamwe 50
Madzima 76
Musara 67

2013] ISSN: 2277

International Journal of Engineering Sciences & Research Technology

Source: Adapted from Fuxman, Fuxman and Miller

This approach bases a query answering
notion of conflict graph. The conflict

graph constitutes a compact, space-efficient
representation of all the repairs of a given database
instance with respect to a set of integrity constraints.
The repairs correspond to maximal independent sets

ph. Chomicki, Marcinkowski and Staworko
(2004) establish that this representation is specifically
geared toward denial constraints. Chomicki et al.

free relational algebra
queries with union and set difference, and extends the

actability of Consistent Query Answer (CQA) with
respect to a set of denial constraints. With conflict
graphs, the vertices of the graph are the tuples in the
database; an edge connects two vertices if they
violate together an integrity constraint. Given a

Zanamwe, 50)}
are the vertices of the conflict graph, and an edge
connects the two vertices. Here follows the conflict

The conflict graph can be used to compute
consistent answers to queries. Chomicki et al. (1999)
describe a PTIME algorithm for CQA that is

applicable to quantifier-free queries. The algorithm is
also applicable to denial constraints
functional dependencies. In this case, the notion of
the conflict graph is replaced by that of the conflict
hyper graph. The algorithm is as follows:

i. a conflict detection is performed to produce
the conflict hyper graph over the database
before processing the query;

ii. the original query is expressed in projection
free relational algebra, and it is translated
into a quantifier-free first

iii. the quantifier-free first
grounded with an appropriate set of bindings
for its variables;

iv. the grounded formula and the conflict hyper
graph are sent to the HProver PTIME
algorithm, and thus evaluated in PTIME.

The entire process is implemented by the Hippo
system, and the output of the system is the consistent
answer to the input query. The above approach is
practical even for large databases. However, the
approach is still not applicable to queries with
quantifiers or general universal co
Moreover, the number of conflicts in a database is
not large, and the conflict graph does not require
much space in the main memory.

Here follows another example of how conflict graphs
are used to query inconsistent databases.

For any natural number
instance
rn = {(0,0), (0,1), . . . , (n−1,0), (
schema R(A,B). Note that the set of all repairs of
with respect to the functional dependency
equal to the set {0, 1} n of all functions from
n−1} to {0, 1}. It has already been indicated that,
given a relation instance r and a set of functional
dependencies F, a conflict graph
vertices are the tuples of r and two tuples are adjacent
only if they are conflicting with respect to a
constraint from F. It has to be remembered that,
conflict graphs are compact representations of
repairs because the set of all repairs is equal to the
set of all maximal sets of the corresponding conflict
graph. The conflict graph for the instance
and the functional dependency
below.

Mark
60
50
76
67

ISSN: 2277-9655

International Journal of Engineering Sciences & Research Technology[905-914]

free queries. The algorithm is
also applicable to denial constraints that generalize
functional dependencies. In this case, the notion of
the conflict graph is replaced by that of the conflict
hyper graph. The algorithm is as follows:

a conflict detection is performed to produce
the conflict hyper graph over the database
before processing the query;
the original query is expressed in projection-
free relational algebra, and it is translated

free first-order formula;
free first-order formula is

grounded with an appropriate set of bindings

the grounded formula and the conflict hyper
graph are sent to the HProver PTIME
algorithm, and thus evaluated in PTIME.

ented by the Hippo
system, and the output of the system is the consistent
answer to the input query. The above approach is
practical even for large databases. However, the
approach is still not applicable to queries with
quantifiers or general universal constraints.
Moreover, the number of conflicts in a database is
not large, and the conflict graph does not require

Here follows another example of how conflict graphs
are used to query inconsistent databases.

For any natural number n consider an

1,0), (n−1,1)} of the
). Note that the set of all repairs of rn

with respect to the functional dependency A→B is
of all functions from {0 . . .

}. It has already been indicated that,
and a set of functional

conflict graph is a graph whose
and two tuples are adjacent

only if they are conflicting with respect to a
. It has to be remembered that,

compact representations of
because the set of all repairs is equal to the

corresponding conflict
graph. The conflict graph for the instance rn for n = 4
and the functional dependency A→B is presented

 [Ngonidzashe, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[905-914]

4.5 Logic programs

Xie and Yang (2007) assert that a more
general approach of retrieving consistent answers
from inconsistent database is based on logic
programs with stable model semantics. The approach
can handle arbitrary relational calculus queries and
binary universal constraints. More general queries
could be considered, but ICs are restricted to be
“binary”, that is, universal with at most two database
literals. There is a one-to-one correspondence
between the database repairs and the stable models of
the logic programs. The basic idea of the logic
programs for CQA is as that we had better specify the
class of repairs for reasoning with all the database
repairs. From a logical specification of this class,
different computations of consistent answers may be
performed. This approach can handle all first-order
queries and a much wider class of ICs than a query
rewriting technique.

The major drawback of logic programs is
that, since they work by grounding a logic program
and use only main memory, these implementations
can handle only relatively small databases. There are
a number of systems for consistent query answering
that rewrite queries into disjunctive logic programs.
For instance, Informix focuses on expressiveness,
more than efficiency and scalability. Such programs
permit rewritings over general functional inclusion,
and exclusion query constraints, but their overhead
are more expensive for computation than SQL.

4.6 Preferred consistent query answers

Staworko, Chomicki, and Marcinkowski
(n.d.) extend the framework of consistent query
answers with an additional input consisting of
preference information(�). � is used to define the set
of preferred repairs ��� � . When consistent answers
are computed, instead of considering the set of all
repairs Rep, the set of preferred repairs is used. It is
assumed that there exists a (possibly partial)
operation of extending � with some additional
preference information and we write � ⊆

� when � is an extension of � . � is considered to

be total when it cannot be extended further. We
identify the following desirable properties of families
of preferred repairs:

1. Non-emptiness: ��� � ≠ ∅

 (P1)
2. Monotonicity : extending preferences can only

narrow the set of preferred repairs
� ⊆� ⟹ ��� � ⊆ ��� �

 (P2)
3. Non-discrimination: if no preference

information is given, then no repair is removed
from consideration ��� � = Rep.
 (P3)
4. Categoricity: given maximal preference

information we obtain exactly one repair
� is total |��� � | = 1.

 (P4)
Here follows an illustration of the concept of

preferred repairs. Assume you have a database
consisting of the three binary relations: Lectures
(Tutor, Course), Department (Tutor, Department)
and Course (Course, Department) with the integrity
constraint
∀ (�,�,)[
���
��� (�,�)˄	��������� (�,) ⊃

��
��� (�,) stating that if a tutor T lectures a
course C and T is in the department D, then the
course C must belong to the department D. Assume
there are two different sources of the databases: D1 =
{Lectures (t1, c1), Lectures (t2, c2), Department(t1, d1

), Course (t1, d1) } and D2 = Lectures(t1, c1),
Department(t2, d1), Course (t2,d2). The two instances
satisfy the constraint, but from their union we get a
relation which does not satisfy the constraint. The
presence of inconsistent data can be resolved by
“repairing” the database. Informally, a repair for a
possibly inconsistent database is a minimal set of
insert and delete operations that make the database
consistent, whereas a consistent answer is a set of
tuples derived from the database, satisfying all
integrity constraints.

Thus the integration of, possibly
inconsistent, databases must consider the possibility
of constructing an integrated consistent database by
replacing inconsistent tuples. For instance, for the
integrated relation of the above example, it is
possible to obtain a consistent database by i) deleting
the tuple Department (t2, d1), ii) deleting the tuple
Lectures (t2, c2), or iii) adding the tuple Course (t2,
d1). These three update operations are repairs that
make the database consistent, but one should prefer a
repair with respect to an alternative one. For instance,
one could prefer a repair which minimize the number
of deletion and insertion of tuples in the relation
Letcures and, in such a case, the first and third repairs

 [Ngonidzashe, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[905-914]

are preferred to the second one, or one should prefer
repairs minimizing the set of deletions and in such a
case the third repair is preferred to the first two
repairs.

Data Cleaning

Dasu and Johnson (2003) advocate that, data
cleaning is one of the strategies for managing
inconsistent databases. Similar sentiments are echoed
by Lomet (2000); he says one way to deal with the
impact of inconsistencies in the results of the query
evaluation is data cleaning. Further, Dasu and
Johnson (2003) note that data cleaning seeks to
identify and correct data errors. However, the
technique is semi-automatic and infeasible for some
applications, for example, a user may want to adopt
different cleaning strategies or retain all inconsistent
data.

Dasu and Johnson (2003) also note that, the
trend toward autonomous computing is making the
need to manage inconsistent data more acute. There
are an increasing number of applications whose data
must be used with a set of independent constraints.
Thus, a static approach with respect to a fixed set of
constraints enforced by data cleaning may not be
appropriate take for instance query rewriting. On the
whole, despite the above limitations associated with
this strategy, it is still useful and applicable in some
scenarios when dealing with inconsistent databases.
Staworko, Chomicki, and Marcinkowski (n.d.)
establish that the data cleaning system provides
valuable information which may include:

– the timestamp of creation/last modification
of the tuple (the conflicts can be resolved by
removing from consideration old, outdated
tuples),
– source of the information of the tuple (a
user can consider the data from one source
more reliable than the data from the other).

Staworko, Chomicki, and Marcinkowski (n.d.) also
note that the approach of data cleaning has several
shortcomings:

– If the user provides insufficient
information to resolve all the conflicts then
data cleaning results in an inconsistent
database; this again may lead to misleading
answers.
– Physically removing the tuples from the
database may lead to information loss.
– Data cleaning does not allow using the
incomplete information often expressed in
inconsistencies.

References
[1] Arenas, M., Bertossi L, and Kifer M. (2000)

Applications of annotated predicate calculus
to querying inconsistent databases. In:
Proceedings of the International Conference
on Computational Logic. Berlin: Springer,
926–941

[2] Arenas, M., Bertossi, L. and Chomicki, J.
(1999) Consistent Query Answers in
Inconsistent Databases. In Proc. ACM
Symposium on Principles of Database
Systems (PODS'99). ACM Press, pp. 68-79.

[3] Bertossi, L. (2006) Consistent Query
Answering in Databases. ACM Sigmod
Record, 35(2):68-76.

[4] Bertossi, L. and Chomicki, J. (2003) Query
Answering in Inconsistent Databases. In
Logics for Emerging Applications of
Databases, Springer, pp. 43-83.

[5] Caniup´an, M. and Bertossi, L. (2007)
Optimizing and Implementing Repair
Programs for Consistent Query Answering
in Databases, Sistemas de Informaci´on
Universidad del B´ıo-B´ıo Concepci´on,
Chile

[6] Chomicki, J. (2007) Consistent Query
Answering: Five Easy Pieces. In Proc.
International Conference on Database
Theory (ICDT'07), Springer LNCS 4353,
pp. 1-17.

[7] Chomicki, J. and Marcinkowski, J. (2000)
On the Computational Complexity of
Consistent Query Answers, Bell Hall, Univ.
at Buffalo, Buffalo, NY

[8] Dasu, T. and Johnson T. (2003) Exploratory
Data Mining and Data Cleaning. New York:
John Wiley.

[9] Fuxman, A., Fuxman, D. and Miller, R.J.
(2005) ConQuer : A System for Efficient
Querying Over Inconsistent Databases,
Proceedings of the 31st VLDB Conference,
Trondheim, Norway

[10] Libkin, L. (n.d.) Data Integration and
Exchange

[11] Rahm, E. and Do, H.H. (2000) Data
Cleaning: Problems and Current
Approaches. IEEE Data Eng. Bull., 23(4):3–
13,

[12] Staworko, S., Chomicki, J. and
Marcinkowski, J. (n.d.) Preference-Driven
Querying of Inconsistent Relational
Databases,

[13] Vassiliadis, P., Vagena, Z., Skiadopoulos, S.
and Karayannidis, N. (2000) ARKTOS: A
Tool For Data Cleaning and Transformation

 [Ngonidzashe, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[905-914]

in DataWarehouse Environments. IEEE
Data Eng. Bull., 23(4):42–47

