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These days it is more common to build integrated or federated databases that draw data from multiple, autonomous 
and distributed sources. The problem of data integration is nevertheless
consistent query answering, which is a specific issue arising in data integration. Consistent query answering is an 
approach to retrieving consistent answers over databases that might be inconsistent with respect t
integrity constraints. The approach is based on concepts of repair and query rewriting. This paper surveys several 
recent researches on obtaining consistent information from inconsistent databases, such as the underlying query 
rewriting model and a number of approaches to computing consistent query answers.
 
Introduction 

This paper focuses on query answering in 
inconsistent databases. Arenas, Bertossi, and 
Chomicki (1999) define an inconsistent database as 
one that violates a given set of integrity constraints. 
So the major thrust of this paper is to explore how 
consistent information can be obtained from 
inconsistent databases in response to user queries. 
Arenas, Bertossi, and Chomicki (1999) establish that 
the traditional practice with regards to inconsistent 
databases is to back out transactions that violate 
integrity constraints. However this paper does not go 
by traditional practice. Instead, the paper presents 
ways of querying inconsistent databases such as 
repairs, query rewriting, consistent answers, 
ConQuer, logic programs and so on.  

Bertossi and Chomicki (2003)
consistent query answer is, intuitively, true regardless 
of the way the database is fixed to remove integrity 
constraint violations. Thus answer consistency serves 
as an indication of its reliability. On the other hand, 
Arenas et al (1999) note that an answer to a query is 
consistent if it is obtained as an answer every time 
the query is posed to a minimally repaired version of 
the original database.  Intuitively, an answer to a 
query posed to a database that violates the integrity 
constraints will be consistent in a precise sense: It 
should be the same as the answer obtained from any 
minimally repaired version of the original database. 
Bertossi, and Chomicki (2003) further 
database repair is another database that is 
and minimally differs from the original database. In 
this paper, only consistent query answers for first
order and scalar aggregation queries will be 
considered.  
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Abstract 
These days it is more common to build integrated or federated databases that draw data from multiple, autonomous 
and distributed sources. The problem of data integration is nevertheless very complex. This paper concentrates on 
consistent query answering, which is a specific issue arising in data integration. Consistent query answering is an 
approach to retrieving consistent answers over databases that might be inconsistent with respect t
integrity constraints. The approach is based on concepts of repair and query rewriting. This paper surveys several 
recent researches on obtaining consistent information from inconsistent databases, such as the underlying query 

and a number of approaches to computing consistent query answers. 
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Rahm and Do (2000) aver that, although 

there exist a wide variety of tools for automatic 
elimination of duplicates, extraction and 
standardization of information, there are practically 
no tools that automatically resolve integrity 
constraint violations. Further, they affirm that, the 
user is responsible for providing a procedure that 
decides how the conflicts should be resolved.   
Vassiliadis, Vagena, Skiadopoulos, and Karayannidis 
(2000) establish that the standard repertoire of actions 
that can be performed on a conflicting tuple is: 
removing the tuple, leaving the tuple, or reporting the 
tuple to an auxiliary table. 
1.1 Inconsistent data scenarios 
This section covers practical scenarios where data is 
inconsistent with integrity constraints. 
Chomicki (2003) present the following 
1.1.1 Integration of autonomous data sources. 

Integration of independent data sources is 
one of the causes of inconsistency in databases. It is 
possible and common that independent data sources 
may separately satisfy given integrity constraints, but 
when they are integrated together the constraints may 
be violated. For instance, consider different, 
conflicting salary for the same employee in an 
employee database and a taxpayer database. Each of 
those databases separately satisfies the functional 
dependency that associates a single salary with each 
employee, and yet together they violate this 
dependency. Additionally, since the sources are 
autonomous, the violations cannot be simply fixed by 
removing one of the conflicting tuples.
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integrity constraints. The approach is based on concepts of repair and query rewriting. This paper surveys several 
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Integration of autonomous data sources.  
Integration of independent data sources is 

ses of inconsistency in databases. It is 
possible and common that independent data sources 
may separately satisfy given integrity constraints, but 
when they are integrated together the constraints may 
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1.1.2 Unenforced integrity constraints.  
Even though integrity constraints capture an 

important part of the semantics of a given 
application, they may still fail to be enforced for a 
variety of reasons. A data source may be a legacy 
system that does not support the notion of integrity 
checking altogether. Or, integrity checking may be 
too costly (this is often the reason for dropping some 
integrity constraints from a database schema). 
Finally, the database management system (DBMS) 
itself may support only a limited class of constraints. 
1.1.3 Temporary inconsistencies.  

It may often be the case that the consistency 
of a database is only temporarily violated, and further 
updates or transactions are expected to restore it. This 
phenomenon is becoming more and more common, 
as the databases are increasingly involved in a variety 
of long-running activities or workflows.  
1.1.4 Conflict resolution.  

Removing tuples from a database to restore 
consistency leads to information loss, which may be 
undesirable. For example, one may want to keep 
multiple phone numbers for an employee if it is not 
clear which is the correct one. In general, the process 
of conflict resolution may be complex, costly, and 
non-deterministic. In real-time decision-making 
applications, there may not be enough time to resolve 
all conflicts relevant to a query.  

In line with the above, Arenas, Bertossi, and 
Chomicki (1999) assert that databases may become 
inconsistent with respect to a given set of integrity 
constraints because of the following factors: 

1. Certain integrity constraints cannot be 
expressed or maintained by existing 
database management systems. 

2. Transient inconsistencies caused by the 
inherent non-atomicity of database 
transactions. 

3. Delayed updates of data warehouses. 
4. Integration of heterogeneous databases 

particularly with duplicated information. 
5. Inconsistency with respect to soft integrity 

constraints where transactions in violation of 
their conditions are not prevented from 
executing. 

6. Legacy data on which one wants to impose 
constraints. The consistency of the database 
will be restored by executing further 
transactions. 

7. User constraints that cannot be checked or 
maintained 

 
 
 
 

1.2 Applications of consistent query answering 
techniques 

This section looks at types of databases where 
data inconsistencies are common and also where 
solutions to querying inconsistent databases can be 
applied. 

1.2.1 Data warehousing.  
Data contained in a data warehouse comes 

from various sources and as such, some of it typically 
may not satisfy the given integrity constraints. The 
normal approach is to clean the data by removing 
inconsistencies before the data is stored in the 
warehouse.  However, a different scenario becomes 
possible wherein the inconsistencies are not removed 
but rather query answers are marked as “consistent” 
or “inconsistent”. In this way, information loss due to 
data cleaning may be prevented.  

1.2.2 Database integration. 
Often, many different databases are integrated 
together to provide a single unified view for the 
users. Database integration is difficult since it 
requires the resolution of many different kinds of 
discrepancies of the integrated databases. One 
possible discrepancy is due to different sets of 
integrity constraints. Moreover, even if every 
integrated database locally satisfies the same integrity 
constraint, the constraint may be globally violated. 
For example, different databases may assign different 
addresses to the same student. Such conflicts may fail 
to be resolved at all and inconsistent data cannot be 
“cleaned” because of the autonomy of different 
databases. Therefore, it is important to be able to find 
out, given a set of local integrity constraints, which 
query answers returned from the integrated database 
are consistent with the constraints and which are not. 

1.1.3 Active and reactive databases. 
A violation of integrity constraints may be acceptable 
under the provision that it will be repaired in the near 
future. For example, the stock level in a warehouse 
may be allowed to fall below the required minimum 
if the necessary replenishments have been ordered. 
During this temporary inconsistency, however, query 
answers should give an indication whether they are 
consistent with the constraints or not. This problem is 
particularly acute in active databases that allow such 
consistency lapses. The result of evaluating a trigger 
condition that is consistent with the integrity 
constraints should be treated differently from the one 
that isn’t. 
1.3 Classes of Integrity constraints 

Integrity constraints are defined as typed, 
closed first-order language formulas. Xie and Yang 
(2007) note that, integrity constraints (ICs) maintain 
the consistency and validity of data and enable them 
to conform to the rules of entities in the real world 
effectively. Chomicki, Marcinkowski and Staworko 
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(2004), note that the main role of integrity constraints 
in databases is to enforce consistency. The 
occurrence of integrity violations is prevented by 
DBMS software. The following are the classes of 
integrity constraints: 
1. Universal integrity constraints: are constraints 

that apply to an entire database schema 
2. Denial constraints: They are a special case of 

universal constraints. Jan Chomicki and Jerzy 
Marcinkowski (2000) establish that denial 
constraints allow an arbitrary number of literals 
per constraint and arbitrary built-in predicates. 
Further, they comment that denial constraints 
also relax the typedness restriction of functional 
dependencies and are particularly useful for 
databases with interpreted data, e.g., numbers. 

3. Binary constraints: universal constraints with at 
most two occurrences of database relations. 

4. Functional dependencies (FDs): They are a 
special case of binary denial constraints. A more 
familiar formulation of a FD is X � Y where X 
is the set of attributes of P corresponding to x1 
and Y the set of attributes of P corresponding to 
x2. 

5. Referential integrity constraints, also known as 
inclusion dependencies: these are constraints that 
stipulate that values of all foreign keys must be 
consistent with values of referencing relations. 

 
Solutions for Inconsistency Handling 

2.1 Paraconsistent logics (Hunter, 1998 and 
Grant and Subrahmanian, 2000) 

2.2 Non-repairing and merging-oriented 
techniques: 

a. Pre-orders on information sets 
(Cantwell, 1998 or Marquis and 
Porquet,    2003 in the 
paraconsistent framework). 

b. Argumentative hierarchy (Elvang-
Goransson and Hunter, 1995), 
argumentative frameworks (Dung, 
1995) and databases (Pradhan, 
2003). 

c. Fusion rules (Appriou et al., 2001). 
d. Merging databases (Cholvy and 

Moral, 2001). 
e. Contextualizing ontologies 

(Bouquet, Giunchiglia, van 
Harmelen, Serafini and 
Stuckenschmidt, 2003) and data 

(MacGregor and Ko, 2003). 
      2.3 Measuring the anomalies: 

a. Evaluating by means of 
paraconsistent logic (Hunter, 
2003). 

b. Measuring inconsistent information 
(Knight, 2003). 

c. Consistent interpretation of Skolem 
noise (Alonso et al., 2003). 

      2.4 Repairing techniques: 
a. To apply knowledge reductions in 

inconsistent systems 
(Kryszkiewiccz,   2001). 

b. Fellegi-Holt method (Boskovitz, 
Goré and Hegland, 2003). 

c. Database repairs by tableaux 
method (Bertossi and Schwind, 
2004). 

d. Consistent querying to repair 
databases (Greco and Zumpano, 
2000). 

e. Consistent enforcement of the 
database by means of greatest 
consistent     specializations (Link, 
2003). 

      2.5 Consistent answering techniques without 
reparation: 

a. Transformation of the query to 
obtain consistent answers (Celle 
and Bertossi, 1994). 

b. Consistent query answer in the 
presence of inconsistent databases 
(Greco and Zumpano, 2000) 

c. To use bounded paraconsistent 
inference (see e.g. Marquis and 
Porquet, 2003). 

d. Detecting the cause of the 
inconsistency and retrieving a 
subset of the original knowledge 
database (Arieli and Avron, 1999). 

      2.6 Consistency preserving methods: 
a. Consistency preserving updates in 

deductive databases (Mayol and 
Teniente, 2003). 

The above six methods and their respective 
categories can be applied when querying inconsistent 
databases. Due to time and other constraints it is 
impractical to explore all the methods in this paper 
hence attention will be focused on method 4 and 5. 
The reason is that, they are much more found in 
practice than other methods. The next sections are 
devoted to detailed discussions of the two approaches 
namely repairing databases and consistent answering 
techniques without reparation. 
 
Database Repairs 

Arenas, Bertossi and Chomicki (1999) 
define a database repair (hereinafter referred to as a 
repair) as an instance of the same database schema 
that does satisfy the integrity constraints and differs 
from the original instance by a minimal set of 
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changes. Depending on what is meant by minimal set 
of changes, different repair semantics can be 
obtained.  In line with the above, Caniup´an and 
Bertossi (2007) indicate that a repair is a database 
instance obtained from database D by deleting or 
inserting whole tuples and that repair satisfies the ICs 
and minimally differs from D (under set inclusion). 
Further, Bertossi (2006) establishes that a tuple t is a 
consistent answer to query Q in a database instance r 
with respect to integrity constraints IC whenever t is 
an answer to Q in every repair of r. Also, Bertossi 
(2006) asserts that a repair must meet the following 
conditions, a repair of a database instance r is a 
database instance r0 over the same schema and 
domain, satisfies IC and differs from r by a minimal 
set of changes (insertions/deletions of whole tuples).  
For example, consider the following relational 
database instance Student: 

 
 
 
 
 
 
 

Here the query: Select * from Student has two 
consistent answers: Madzima, 76 and Masara, 67 

The instance Student violates the functional 
dependency F1: Name � Mark through the first two 
tuples. This is an inconsistent database. Nevertheless, 
there is still some consistent information in it. For 
example, only the first two tuples participate in the 
integrity violation. In order to characterize the 
consistent information, we notice that there are two 
possible ways to repair the database in a minimal way 
if only deletions and insertions of whole tuples are 
allowed. They give rise to two different repairs: 
 

 
 
 
 
 
 
 
 
 
 
 

It is clear that that certain information (for 
example, Madzima: 76) persists in both repairs, since 
it does not participate in the violation of the 
functional dependency F1. On the other hand, some 
information (for example, Zanamwe: 50) does not 
persist in all repairs, because it participates in the 
violation of F1. There are other pieces of information 

that can be found in both repairs, for we know that 
there is a student with the name Zanamwe. Such 
information cannot be obtained if we simply discard 
the tuples participating in the violation. 
 
In addition to the foregoing repairs, Libkin (n.d.) 
claims that database repairs depend on types of 
integrity constraints imposed on the database. For 
instance in the above example if constraints are 
functional dependences: say Name→ Mark, one of 
the tuples that violate the functional dependency must 
be deleted such that the repair will either be  

 
But not 
both as is 
in the first 
case 

OR 
 
 
 
 
 

On the other hand, if constraints are referential 
integrity constraints, and you are given the referential 
integrity constraint, R[X] ⊆ S[Y] and the following 
relations: 
 
 
 
 
 
 

To repair the above database which violates 
referential integrity constraints a tuple must be added 
to relation S such that it becomes: 
 
 
 
 
 
 
 

Another example to show how database 
repairs are done is as follows: let database instance D 
= {S (a), S (b), and Q (b)}. D is inconsistent with 
respect with IC:  x (S(x) ⊆ Q(x)). Consistency can 

be minimally restored by: Inserting Q(a): D1 = 
{S(a),Q(a), S(b),Q(b)} or by eliminating S(a): D2 = 
{S(b),Q(b)}. If we query S(x), the only consistent 
answer is tuple b 

In addition to above assertions (by Libkin), 
Xie and Yang (2007) note that, if a database is 
inconsistent with respect to the key constraint two 
repairs are possible. For example, it is assumed that a 

STUDENT Name Mark 
Zanamwe 50 
Zanamwe 75 
Madzima 76 
Musara 67 

S Y Q 
x1 q1 
x3 q2 

R X R 
x1 r1 
x2 r2 

STUDENT1 Name Mark 
Zanamwe 50 
Madzima 76 
Musara 67 

STUDENT2 Name Mark 
Zanamwe 75 
Madzima 76 
Musara 67 

STUDENT1 Name Mark 
Zanamwe 50 
Madzima 76 
Musara 67 

 STUDENT2 Name Mark 
Zanamwe 75 
Madzima 76 
Musara 67 

S X Q 
x1 q1 
x3 q2 

 x2 q3 
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relational schema R (reg#, sex), and database instance 
I = {( r0020219, male), (r0020219, female), 
(r0020345, female)}. I is inconsistent with respect to 
the key constrain. The two repairs are: I1 = 
{( r0020219, male), (r0020345, female)} and I2 = 
{( r0020219, female), (r0020345, female)}. It is clear 
that all the repairs have a minimal distance to the 
inconsistent database, but {(r0020219, female)} and 
{( r0020345, female)} are not repairs because their 
distances with respect to I are not minimal under set 
inclusion.  

The minimality condition for the repairs is 
crucial in the definition. Otherwise, the empty set 
would trivially be a repair of every instance. For 
example, let q1 (reg#) = ∃ sex:R(reg#, sex). The 
consistent answers for q1 on I are (r0020219) and 
(r0020345). Let q2 (reg#, sex) = R (reg#, sex). The 
only consistent answer for q2 on I is (r0020345, 
female). Notice that the tuples (r0020219, male) and 
(r0020219, female) are not consistent answers. The 
reason is that neither of them is present in both 
repairs, which reflects the fact that r0020219’s sexes 
are inconsistent. 

It is evident from the above that, to repair a 
database that violates integrity constraints, either 
tuples have to be deleted or inserted. In the most 
cases, it could be difficult or undesirable to repair the 
database in order to restore consistency. This might 
be because, the process may be too expensive, useful 
data may be lost, one might not have permission to 
repair a database and restoring consistency can be a 
complex process. One strategy for managing 
inconsistent databases is to obtain consistent data 
without repairing the inconsistent database first. This 
technique is discussed below. 
  
Consistent Answering Techniques Without 
Reparation 

The approach is also known as, consistent 
query answering (CQA). This approach seeks to 
resolve inconsistencies at query time over 
inconsistent databases. Consistent query answering is 
the problem of retrieving “consistent” answers over 
inconsistent databases with respect to a set of 
integrity constraints (Xie and Yang, 2007).  The 
approach involves a number sub-approaches namely, 
transformation of the query to obtain consistent 
answers, consistent query answer in the presence of 
inconsistent databases, to use bounded paraconsistent 
inference, detecting the cause of the inconsistency 
and retrieving a subset of the original database. The 
next section looks at some of the computational 
techniques for CQA 
4.1 Consistent Query Answer in the presence 
of inconsistent databases 
 

This technique is based on the postulation 
that an inconsistent database is not necessarily going 
to be repaired in a way that fully restores its 
consistency. This implies that, if such a database is to 
be queried, a distinction has to be made between the 
information in the database that violates integrity 
constraints, and one that does not. Typically, only a 
small part of a database will be inconsistent. It is 
therefore imperative to make precise the notion of 
“consistent" or “correct" information in an 
inconsistent database.  

The following example presents the basic 
intuitions behind the notion of consistent query 
answer: 
Consider a database subject to the following Integrity 
Constraints: 

x(R(x)  S(x)): 

The instance {R (a), R (b), S (a), S(c)} 
violates this integrity constraint. Now if the query 
asks for all x such that S(x), only a is returned as an 
answer consistent with the integrity constraint. So 
this approach will only give answers that satisfy 
integrity constraints and ignore inconsistent 
information. 
4.2 Transformation of queries to obtain 
consistent answers (Query rewriting) 

This is a computational mechanism for 
retrieving consistent answers from databases that 
violate integrity constraints. Arenas et al  (1999) note 
that, given a first-order query Q and an inconsistent 
database instance r, instead of explicitly computing 
all the repairs of r and querying all of them, a new 
query T(Q) is computed and posed to r the only 
available database. The answers to the new query are 
expected to be the consistent answers to Q. Xie and 
Yang (2007) assert that, the goal of query rewriting is 
to identify the subclasses of consistent queries to 
obtain consistent answers by rewriting the query into 
a new first-order query. The approach has two 
advantages namely: (a) allowing for consistent query 
answer in PTIME in data complexity; (b) the original 
query is rewritten into a new first-order query, which 
could be expressed in SQL. In such a case, consistent 
query answer can be done using the same query 
engine. On the other hand, this approach is only 
limited to the polynomial subclasses of the problem. 

Arenas et al. (1999) first propose a method 
to compute consistent query answers based on query 
rewriting. The rewriting applies to and produces first-
order queries, which draws on semantic query 
optimization techniques. A literal in the query can be 
resolved with an integrity constraint to form a 
residue. The method is an iterative operator that 
computes a sequence of queries. At each step of the 
iteration, each of the literals in the query gets its 
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residues appended to it by means of a conjunction. 
Residues are associated with single literals P(x) or ¬ 
P(x) (only one of each for every database relation p). 
Then all such residues are conjoined with the literal 
to form their expanded versions. If a literal that has 
been expanded appears in a residue, the residue has 
to be further expanded until no more changes occur. 
For each literal P(x) (resp. ¬ P(x)) and each 
constraint containing ¬ P(x) (resp. P(x)) in its clausal 
form (possibly after variable renaming), a local 
residue is obtained by removing ¬ P(x) (resp. P(x)) 
and the quantifiers for x from the (renamed) 
constraint.  

Bertossi (2006) indicate that, query 
rewriting involves taking the original query Q that 
expects consistent answers, and syntactically 
transform it into a new query Q0, such that the 
rewritten query Q0, when posed to the original 
database, obtains as usual answers, the consistent 
answers to query Q. The essential question is, 
depending on the language in which Q is expressed, 
what kind of language is necessary for expressing the 
rewriting Q0. The answer to this question should also 
depend on the kind of ICs being considered. It has to 
be noted that the new query collects as normal 
answers those tuples where the value of the first 
attribute is not associated to two different values of 
the second attribute in the relation. The diagram 
below clearly shows how query rewriting works in 
practice. 
Using the above example, a query to select all 
students from the relation student such as  

SELECT Name, Mark 
FROM Student; 

Will give an inconsistent answer, so the query can be 
rewritten as 

SELECT Name, Mark 
FROM Student 
CONSISTENT WITH 
FD (Name;Mark); 

 
Bertossi (2006) claims that query rewriting has the 
following drawbacks: 
1. It can only be applied to certain SQL queries, 

essentially conjunctions of database tables.  
2. Only applicable to certain integrity constraints, 

essentially universal integrity constraints. This 
covers most integrity constraints found in 
database praxis, exclusive of referential integrity 
constraints. 

3. It only works with more expressive queries 
associated with referential integrity constraints 

Similarly, Arenas et al  (1999) comment that the 
query rewriting approach has some limitations, 
notably, the iterative operator associated with the 
approach only works for queries that are conjunctions 

of literals and universal integrity constraints but when 
applied to disjunctive or existential queries, 
completeness is lost 

The diagram below shows how the query 
rewriting technique works. 

 
Source: adapted from Bertossi (2006) 

 
4.3. ConQuer (Consistent Querying) 

Fuxman, Fuxman and Miller (2005) present 
a version of query rewriting known as ConQuer.  
They note that ConQuer is a system for efficient and 
scalable answering of Structured Query Language 
(SQL) queries on databases that may violate a set of 
integrity constraints. Further they assert that, 
ConQuer permits users to postulate a set of key 
constraints together with their queries. The system 
rewrites the queries to retrieve all (and only) data that 
is consistent with respect to the constraints. The 
rewriting is into SQL, so the rewritten queries can be 
efficiently optimized and executed by commercial 
database systems.  

Fuxman, Fuxman and Miller (2005) indicate 
that one of the practical applications of ConQuer is in 
Customer Relationship Management (CRM) where 
an integrated customer database is designed by 
drawing information from various autonomous 
sources such as sales, shipping, customer support, 
web forms and demographic data. Fuxman, Fuxman 
and Miller (2005) further postulate that, if data 
sources contain inconsistent data just transfer all the 
data to the integrated database and then rewrite your 
queries such that only consistent answers are 
obtained. The diagram below is a pictorial 
representation of how query answering in ConQuer 
operates. 
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Source: Adapted from Fuxman, Fuxman and Miller 
(2005) 

 
4.4. Conflict graphs 

This approach bases a query answering 
process on the notion of conflict graph. The conflict 
graph constitutes a compact, space
representation of all the repairs of a given database 
instance with respect to a set of integrity constraints. 
The repairs correspond to maximal independent sets 
of the graph. Chomicki, Marcinkowski and Staworko 
(2004) establish that this representation is specifically 
geared toward denial constraints. Chomicki et al. 
(2003) consider projection-free relational algebra 
queries with union and set difference, and extends the 
tractability of Consistent Query Answer (CQA) with 
respect to a set of denial constraints. With conflict 
graphs, the vertices of the graph are the tuples in the 
database; an edge connects two vertices if they 
violate together an integrity constraint. Given a
relation student as shown below: 
 
 
 
 
 
 
 
Two conflict tuples {(Zanamwe, 60), (Zanamwe
are the vertices of the conflict graph, and an edge 
connects the two vertices. Here follows 
graph. 

 
The conflict graph can be used to compute 

consistent answers to queries. Chomicki et al. (1999) 
describe a PTIME algorithm for CQA that is 

STUDENT Name Mark
Zanamwe 60
Zanamwe 50
Madzima 76
Musara 67
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Source: Adapted from Fuxman, Fuxman and Miller 
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representation of all the repairs of a given database 
instance with respect to a set of integrity constraints. 
The repairs correspond to maximal independent sets 

ph. Chomicki, Marcinkowski and Staworko 
(2004) establish that this representation is specifically 
geared toward denial constraints. Chomicki et al. 

free relational algebra 
queries with union and set difference, and extends the 

actability of Consistent Query Answer (CQA) with 
respect to a set of denial constraints. With conflict 
graphs, the vertices of the graph are the tuples in the 
database; an edge connects two vertices if they 
violate together an integrity constraint. Given a 

Zanamwe, 50)} 
are the vertices of the conflict graph, and an edge 
connects the two vertices. Here follows the conflict 

 

The conflict graph can be used to compute 
consistent answers to queries. Chomicki et al. (1999) 
describe a PTIME algorithm for CQA that is 

applicable to quantifier-free queries. The algorithm is 
also applicable to denial constraints 
functional dependencies. In this case, the notion of 
the conflict graph is replaced by that of the conflict 
hyper graph. The algorithm is as follows: 

i. a conflict detection is performed to produce 
the conflict hyper graph over the database 
before processing the query; 

ii.  the original query is expressed in projection
free relational algebra, and it is translated 
into a quantifier-free first

iii.  the quantifier-free first
grounded with an appropriate set of bindings 
for its variables;  

iv. the grounded formula and the conflict hyper 
graph are sent to the HProver PTIME 
algorithm, and thus evaluated in PTIME. 

The entire process is implemented by the Hippo 
system, and the output of the system is the consistent 
answer to the input query. The above approach is 
practical even for large databases. However, the 
approach is still not applicable to queries with 
quantifiers or general universal co
Moreover, the number of conflicts in a database is 
not large, and the conflict graph does not require 
much space in the main memory. 
 
Here follows another example of how conflict graphs 
are used to query inconsistent databases.
 

For any natural number 
instance 
rn = {(0,0), (0,1), . . . , (n−1,0), (
schema R(A,B). Note that the set of all repairs of 
with respect to the functional dependency 
equal to the set {0, 1} n of all functions from 
n−1} to {0, 1}. It has already been indicated that, 
given a relation instance r and a set of functional 
dependencies F, a conflict graph 
vertices are the tuples of r and two tuples are adjacent 
only if they are conflicting with respect to a 
constraint from F. It has to be remembered that, 
conflict graphs are compact representations of 
repairs because the set of all repairs is equal to the 
set of all maximal sets of the corresponding conflict 
graph. The conflict graph for the instance 
and the functional dependency 
below. 

Mark 
60 
50 
76 
67 
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free queries. The algorithm is 
also applicable to denial constraints that generalize 
functional dependencies. In this case, the notion of 
the conflict graph is replaced by that of the conflict 
hyper graph. The algorithm is as follows:  

a conflict detection is performed to produce 
the conflict hyper graph over the database 
before processing the query;  
the original query is expressed in projection-
free relational algebra, and it is translated 

free first-order formula;  
free first-order formula is 

grounded with an appropriate set of bindings 

the grounded formula and the conflict hyper 
graph are sent to the HProver PTIME 
algorithm, and thus evaluated in PTIME.  

ented by the Hippo 
system, and the output of the system is the consistent 
answer to the input query. The above approach is 
practical even for large databases. However, the 
approach is still not applicable to queries with 
quantifiers or general universal constraints. 
Moreover, the number of conflicts in a database is 
not large, and the conflict graph does not require 

 

Here follows another example of how conflict graphs 
are used to query inconsistent databases. 

For any natural number n consider an 

1,0), (n−1,1)} of the 
). Note that the set of all repairs of rn 

with respect to the functional dependency A→B is 
of all functions from {0 . . . 

}. It has already been indicated that, 
and a set of functional 

conflict graph is a graph whose 
and two tuples are adjacent 

only if they are conflicting with respect to a 
. It has to be remembered that, 

compact representations of 
because the set of all repairs is equal to the 

corresponding conflict 
graph. The conflict graph for the instance rn for n = 4 
and the functional dependency A→B is presented 
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4.5 Logic programs 

Xie and Yang (2007) assert that a more 
general approach of retrieving consistent answers 
from inconsistent database is based on logic 
programs with stable model semantics. The approach 
can handle arbitrary relational calculus queries and 
binary universal constraints. More general queries 
could be considered, but ICs are restricted to be 
“binary”, that is, universal with at most two database 
literals. There is a one-to-one correspondence 
between the database repairs and the stable models of 
the logic programs. The basic idea of the logic 
programs for CQA is as that we had better specify the 
class of repairs for reasoning with all the database 
repairs. From a logical specification of this class, 
different computations of consistent answers may be 
performed. This approach can handle all first-order 
queries and a much wider class of ICs than a query 
rewriting technique.  

The major drawback of logic programs is 
that, since they work by grounding a logic program 
and use only main memory, these implementations 
can handle only relatively small databases. There are 
a number of systems for consistent query answering 
that rewrite queries into disjunctive logic programs. 
For instance, Informix focuses on expressiveness, 
more than efficiency and scalability. Such programs 
permit rewritings over general functional inclusion, 
and exclusion query constraints, but their overhead 
are more expensive for computation than SQL.  
 
4.6 Preferred consistent query answers 

Staworko, Chomicki, and Marcinkowski 
(n.d.) extend the framework of consistent query 
answers with an additional input consisting of 
preference information(�). � is used to define the set 
of preferred repairs ��� � . When consistent answers 
are computed, instead of considering the set of all 
repairs Rep, the set of preferred repairs is used. It is 
assumed that there exists a (possibly partial) 
operation of extending �   with some additional 
preference information and we write �  ⊆

� when � is an extension of �  . �   is considered to 

be total when it cannot be extended further. We 
identify the following desirable properties of families 
of preferred repairs: 

 
1. Non-emptiness: ��� �   ≠ ∅    

    (P1) 
2. Monotonicity : extending preferences can only 

narrow the set of preferred repairs 
�  ⊆� ⟹ ��� �    ⊆ ��� �     

    (P2) 
3. Non-discrimination: if no preference 

information is given, then no repair is removed 
from consideration ��� �   = Rep.   
     (P3) 
4. Categoricity: given maximal preference 

information we obtain exactly one repair 
� is total |��� �    | = 1.    

    (P4) 
Here follows an illustration of the concept of 

preferred repairs. Assume you have a database 
consisting of the three binary relations:  Lectures 
(Tutor, Course), Department (Tutor, Department) 
and Course (Course, Department) with the integrity 
constraint 
∀ (�,�,	)[
���
��� (�,�)˄	���������  (�,	) ⊃

��
��� (�,	) stating that if a tutor T lectures a 
course C and T is in the department D, then the 
course C must belong to the department D. Assume 
there are two different sources of the databases: D1 = 
{Lectures (t1, c1),  Lectures (t2, c2), Department(t1, d1 

), Course (t1, d1) } and D2 = Lectures(t1, c1), 
Department(t2, d1 ), Course (t2,d2). The two instances 
satisfy the constraint, but from their union we get a 
relation which does not satisfy the constraint. The 
presence of inconsistent data can be resolved by 
“repairing” the database. Informally, a repair for a 
possibly inconsistent database is a minimal set of 
insert and delete operations that make the database 
consistent, whereas a consistent answer is a set of 
tuples derived from the database, satisfying all 
integrity constraints.  

Thus the integration of, possibly 
inconsistent, databases must consider the possibility 
of constructing an integrated consistent database by 
replacing inconsistent tuples. For instance, for the 
integrated relation of the above example, it is 
possible to obtain a consistent database by i) deleting 
the tuple Department (t2, d1), ii) deleting the tuple 
Lectures (t2, c2), or iii) adding the tuple Course (t2, 
d1). These three update operations are repairs that 
make the database consistent, but one should prefer a 
repair with respect to an alternative one. For instance, 
one could prefer a repair which minimize the number 
of deletion and insertion of tuples in the relation 
Letcures and, in such a case, the first and third repairs 
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are preferred to the second one, or one should prefer 
repairs minimizing the set of deletions and in such a 
case the third repair is preferred to the first two 
repairs. 
 
Data Cleaning 

Dasu and Johnson (2003) advocate that, data 
cleaning is one of the strategies for managing 
inconsistent databases. Similar sentiments are echoed 
by Lomet (2000); he says one way to deal with the 
impact of inconsistencies in the results of the query 
evaluation is data cleaning. Further, Dasu and 
Johnson (2003) note that data cleaning seeks to 
identify and correct data errors. However, the 
technique is semi-automatic and infeasible for some 
applications, for example, a user may want to adopt 
different cleaning strategies or retain all inconsistent 
data.   

Dasu and Johnson (2003) also note that, the 
trend toward autonomous computing is making the 
need to manage inconsistent data more acute. There 
are an increasing number of applications whose data 
must be used with a set of independent constraints. 
Thus, a static approach with respect to a fixed set of 
constraints enforced by data cleaning may not be 
appropriate take for instance query rewriting. On the 
whole, despite the above limitations associated with 
this strategy, it is still useful and applicable in some 
scenarios when dealing with inconsistent databases. 
Staworko, Chomicki, and Marcinkowski (n.d.) 
establish that the data cleaning system provides 
valuable information which may include: 

– the timestamp of creation/last modification 
of the tuple (the conflicts can be resolved by 
removing from consideration old, outdated 
tuples), 
– source of the information of the tuple (a 
user can consider the data from one source 
more reliable than the data from the other). 

Staworko, Chomicki, and Marcinkowski (n.d.) also 
note that the approach of data cleaning has several 
shortcomings:  

– If the user provides insufficient 
information to resolve all the conflicts then 
data cleaning results in an inconsistent 
database; this again may lead to misleading 
answers. 
– Physically removing the tuples from the 
database may lead to information loss. 
– Data cleaning does not allow using the 
incomplete information often expressed in 
inconsistencies. 
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